名人简介
  • 车载音乐
  • 车载视频
  • LRC歌词
  • 简谱图片
  • 手机铃声
  • 名人简介
  • 汽车知识
当前位置:首页 - 名人 - 博导 - 李武军(南大教授)
李武军(南大教授)

李武军(南大教授)

李武军,博士,南京大学副教授,博士生导师。主要研究领域为人工智能、机器学习、模式识别、数据挖掘、云计算与大数据。2003年毕业于南京大学计算机科学与技术系,获理学学士学位;2006年毕业于南京大学计算机科学与技术系,获工学硕士学位;2010年毕业于香港科技大学计算机科学与工程系,获工学博士学位。
展开

个人经历

李武军,博士,副教授,博士生导师。主要研究领域为人工智能、机器学习、模式识别、数据挖掘、云计算与大数据。2003年毕业于南京大学计算机科学与技术系,获理学学士学位;2006年毕业于南京大学计算机科学与技术系,获工学硕士学位;2010年毕业于香港科技大学计算机科学与工程系,获工学博士学位。

2010年9月至2013年12月于上海交通大学计算机科学与工程系从事教学与科研工作。2014年1月加入南京大学计算机科学与技术系。曾获Google奖教金、南京大学登峰人才支持计划(B层次)。发表论文30余篇,其中大部分发表在Artificial Intelligence、IEEE Transactions TKDE、ICML、NIPS、SIGIR、IJCAI、AAAI等国际知名期刊和会议上。现任《Frontiers of Computer Science》青年副编辑,担任TPAMI、TNNLS、TKDE、TPDS、TCSVT、中国科学、科学通报、软件学报等多个国际和国内知名期刊的特邀评审人,并担任ICML、NIPS、IJCAI、UAI等多个国际知名会议的程序委员或者评审人。主持和参加了多项国家级课题研究,包括国家自然科学基金项目、863重大项目等。

指导的学生在AAAI、IJCAI、NIPS、SIGIR等国际知名会议上发表多篇高水平论文,继续深造的学生获得斯坦福大学、威斯康辛-麦迪逊分校、南加州大学、香港科技大学等知名高校的博士全额奖学金,就业的学生被微软美国总部、摩根斯坦利、阿里巴巴、腾讯等知名企业聘用。

2010年9月至2013年12月于上海交通大学计算机科学与工程系从事教学与科研工作。

2014年1月加入南京大学计算机科学与技术系机器学习与数据挖掘组,入选南京大学登峰人才支持计划(B层次)

李武军

研究方向

主要研究领域为人工智能、机器学习、模式识别、数据挖掘、云计算与大数据。

主要成绩

Conference/Workshop organization:

orkshop onMachine Learning in China (MLChina’14)

PC member:

2015: IJCAI (Senior PC),AAAI,SIGKDD,UAI, PAKDD,BigComp
2014: ICML, NIPS (reviewer), UAI, SDM, ICPR, ICTAI, BigComp, CCDM, CCPR, PRICAI, CIDM, NLPCC, CCF-BigData
2013: IJCAI
2012: ICTAI
2011: IJCAI, ICTAI, ICONIP
2010: ICPR

Editorial board member:

Communications of the China Computer Federation (CCCF)
Junior Associate Editor of Frontiers of Computer Science(FCS)

Journal reviewer:

IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Neural Networks and Learning Systems
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Circuits and Systems for Video Technology
ACM Transactions on Intelligent Systems and Technology
Data Mining and Knowledge Discovery
Pattern Recognition
Neural Networks
Neurocomputing
Frontiers of Computer Science
Journal of Computer Science and Technology
SCIENCE CHINA Information Sciences
Chinese Science Bulletin
Journal of Software

Selected Publications

(* indicates students under my supervision)

Papers:

    Learning to hash for big data: current status and future trends.
    Wu-Jun Li, Zhi-Hua Zhou.
    To Appear in Chinese Science Bulletin (In Chinese, Invited Paper).Relational collaborative topic regression for recommender systems.
    Hao Wang*,Wu-Jun Li.
    To Appear in IEEE Transactions on Knowledge and Data Engineering (TKDE).Multicategory large margin classification methods: hinge losses vs. coherence functions.
    Zhihua Zhang, Cheng Chen, Guang Dai,Wu-Jun Li, Dit-Yan Yeung.
    Artificial Intelligence,215: 55-78, 2014.Distributed Power-law Graph Computing: Theoretical and Empirical Analysis.
    Cong Xie*, Ling Yan*,Wu-Jun Li, Zhihua Zhang.
    Proceedings ofthe28thAnnual Conference on Neural Information Processing Systems (NIPS),2014.

    Distributed Stochastic ADMM for Matrix Factorization.
    Zhi-Qin Yu*, Xing-Jian Shi*, Ling Yan*,Wu-Jun Li.
    Proceedings ofthe23rdACMInternationalConferenceonInformationandKnowledgeManagement (CIKM),2014.Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising.
    Ling Yan*,Wu-Jun Li, Gui-Rong Xue, Dingyi Han.
    Proceedings of the31stInternational Conference on Machine Learning(ICML),2014.Supervised Hashing with Latent Factor Models.
    Peichao Zhang*, Wei Zhang*,Wu-Jun Li, Minyi Guo.
    Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),2014.Large-Scale Supervised Multimodal Hashing with Semantic Correlation Maximization.
    Dongqing Zhang*,Wu-Jun Li.
    Proceedings of theTwenty-Eighth AAAI Conference on Artificial Intelligence (AAAI),2014.Robust crowdsourced learning.
    Zhiquan Liu*, Luo Luo*,Wu-Jun Li.
    Proceedings of theIEEE International Conference on Big Data (BigData),2013.

    Online Egocentric models for citation networks.
    Hao Wang*,Wu-Jun Li.
    Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI),2013.Collaborative topic regression with social regularization for tag recommendation.
    Hao Wang*, Binyi Chen*,Wu-Jun Li.
    Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI),2013.Isotropic hashing.
    Weihao Kong*,Wu-Jun Li.
    Proceedings of the 26thAnnual Conference on Neural Information Processing Systems (NIPS),2012.Manhattan hashing for large-scale image retrieval.
    Weihao Kong*,Wu-Jun Li, Minyi Guo.
    Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),2012.Double-bit quantization for hashing.
    Weihao Kong*,Wu-Jun Li.
    Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI),2012.Emoticon smoothed language models for Twitter sentiment analysis.
    Kun-Lin Liu*,Wu-Jun Li, Minyi Guo.
    Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI),2012.Sparse probabilistic relational projection.
    Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI),2012.Social relations model for collaborative filtering.
    Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI),2011.Generalized latent factor models for social network analysis.
    Wu-Jun Li, Dit-Yan Yeung, Zhihua Zhang.
    Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI), 2011.MILD: Multiple-instance learning via disambiguation.
    Wu-Jun Li, Dit-Yan Yeung.
    IEEE Transactions on Knowledge and Data Engineering (TKDE), 22 (1): 76-89, 2010.Gaussian process latent random field.
    Guoqiang Zhong,Wu-Jun Li, Dit-Yan Yeung, Cheng-Lin Liu, Xinwen Hou.
    Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI),2010.Probabilistic relational PCA.
    Wu-Jun Li, Dit-Yan Yeung, Zhihua Zhang.
    Proceedings of theTwenty-Third Annual Conference on Neural Information Processing Systems (NIPS), 2009.Relation regularized matrix factorization.
    Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI), 2009.Localized content-based image retrieval through evidence region identification.
    Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009.TagiCoFi: Tag informed collaborative filtering.
    Yi Zhen,Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the Third ACM Conference on Recommender Systems (RecSys), 2009.Latent Wishart processes for relational kernel learning.
    Wu-Jun Li, Zhihua Zhang, Dit-Yan Yeung.
    Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS),JMLR: W&CP 5, pp. 336-343, 2009.Coherence functions for multicategory margin-based classification methods.
    Zhihua Zhang, Michael Jordan,Wu-Jun Li, Dit-Yan Yeung.
    Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS),JMLR: W&CP 5, pp. 647-654, 2009.Joint boosting feature selection for robust face recognition.
    Rong Xiao,Wu-Jun Li, Yuandong Tian, Xiaoou Tang.
    Proceedings of theIEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR)(2):1415-1422, 2006.

Book (in Chinese):

    周憬宇,李武军,过敏意.《飞天开放平台编程指南-阿里云计算的实践》. 电子工业出版社,2013年3月.

演讲

Dec 2014. Big Data Machine Learning. Ocean University of China.Nov 2014. Learning to Hash for Big Data. University of Electronic Science and Technology of China.Nov 2014. Big Data Machine Learning. Sichuan University.Nov 2014. Big Data Machine Learning. Nanjing University of Information Science and Technology.Nov 2014. Big Data Machine Learning. XI’AN University of Technology.Nov 2014. Big Data Machine Learning.China Workshop on Machine Learning and Applications.Nov 2014. Learning to Hash for Big Data. Tutorial at CIKM 2014 .Oct 2014.Big Data Machine Learning.Youth Academic Forum.National Key Laboratory for Novel Software Technology,Nanjing University.May2014. Learning to Hash for Big Data.Young Scientist Forum on Big Data and Mobile Internet.Organized by China Association for Science and Technology.May 2014. Learning to Hash for Big Data. Zhejiang Normal University.Dec 2013. Learning to Hash for Big Data Retrieval and Mining.Key Lab of Intelligent Information Processing, CAS.Dec 2013. Big Data Machine Learning. Huazhong University of Science and Technology.Nov 2013. Learning to Hash for Big Data Retrieval and Mining. Shandong University, Invited by YOCSEF Jinan.Nov 2013. Learning to Hash for Big Data Retrieval and Mining.Forum on Big Data Machine Learning, Tianjin University, Invited by YOCSEF Tianjin.May 2013. Big Data Machine Learning. BesTV, Shanghai.Jan 2013. Learning to Hash for Big Data Retrieval and Mining.The Workshop on Data Science and Information Industry. Shanghai Jiao Tong University.

更新日期:2024-11-21

免费下载联系我们下载帮助免责声明版权声明用户协议隐私协议撤稿声明作品投搞关于我们常见问题网站地图

声明:网站内容全部来自于网络公开搜索结果,不保证100%准确性,仅供参考,如侵犯到您的权益,请提供版权证明来信通知,我们72小时内删除!

本站仅仅提供一个观摩学习的环境,非赢利性网站,将不对任何资源负法律责任,不接受任何赞助和广告!

删稿邮箱: pgdjz@qq.com

Copyright @ 2023-2024 www.pgdjz.com All Rights Reserved