名人简介
  • 车载音乐
  • 车载视频
  • LRC歌词
  • 简谱图片
  • 手机铃声
  • 名人简介
  • 汽车知识
当前位置:首页 - 名人 - 各国数学家 - 勒奈·笛卡尔
勒奈·笛卡尔

勒奈·笛卡尔

勒奈·笛卡尔(René Descartes),常作笛卡儿,1596年3月31日生于法国安德尔-卢瓦尔省笛卡尔-1650年2月11日逝于瑞典斯德哥尔摩),法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。
展开

勒奈·笛卡尔 - 个人概括

笛卡尔出身于一个地位较低的贵族家庭,父亲是布列塔尼议会的议员。1岁多时母亲患肺结核去世,而他也受到传染,造成体弱多病。母亲去世后,父亲移居他乡并再婚,而把笛卡尔留给了他的外祖母带大,自此父子很少见面,但是父亲一直提供金钱方面的帮助,使他能够受到良好的教育。

在他8岁时笛卡尔就进入拉夫赖士(La Flèche)的耶稣英语会学校接受教育,受到良好的古典学以及数学训练。1613年到普瓦捷大学学习法律,1616年毕业。毕业后笛卡尔一直对职业选择不定,又决心游历欧洲各地,专心寻求“世界这本大书”中的智慧。因此他于1618年在荷兰入伍,随军远游。

笛卡尔对数学的兴趣就是在荷兰当兵期间产生的。一次他看到军营公告栏上用佛莱芒语写的数学问题征答引起了兴趣,并且让一位他当兵的朋友,进行了翻译。他的这位朋友在数学和物理学方面有很高造诣,很快成为了他的老师。4个月后,他写信给这位朋友,“你是将我从冷漠中唤醒的人...”,并且告诉他,自己在数学上有了4个重大发现。可惜的是这些发现现在已经无从知道了。

26岁时,笛卡尔变卖掉父亲留下的资产,用4年时间游历欧洲,其中在意大利住了2年,随后定居巴黎。

1621年笛卡尔退伍,并在1628年移居荷兰,在那里住了20多年。在此期间,笛卡尔专心致力于哲学研究,并逐渐形成自己的思想。他在荷兰发表了多部重要的文集,包括了《方法论》、《形而上学的沉思》(Méditations métaphysiques)和《哲学原理》(Les Principes de la philosophie)等。

1649年笛卡尔受瑞典女王之邀来到斯德哥尔摩,但不幸在这片“熊、冰雪与岩石的土地”上得了肺炎,并在1650年2月去世。1663年他的著作在罗马和巴黎被列入禁书之列。1740年,巴黎才解除了禁令,那是为了对当时在法国流行起来的牛顿世界体系提供一个替代的东西。

勒奈·笛卡尔 - 哲学思想

笛卡尔被广泛认为是西方现代哲学的奠基人,他第一个创立了一套完整的哲学体系。哲学上,笛卡尔是一个二元论者以及理性主义者。笛卡尔认为,人类应该可以使用数学的方法――也就是理性――来进行哲学思考。他相信,理性比感官的感受更可靠。(他举出了一个例子:在我们做梦时,我们以为自己身在一个真实的世界中,然而其实这只是一种幻觉而已,参见庄周梦蝶)。他从逻辑学、几何学和代数学中发现了4条规则:
1. 除了清楚明白的观念外,绝不接受其他任何东西;

2. 必须将每个问题分成若干个简单的部分来处理;

3. 思想必须从简单到复杂;  

4. 我们应该时常进行彻底的检查,确保没有遗漏任何东西。

笛卡尔将这种方法不仅运用在哲学思考上,还运用于几何学,并创立了解析几何。

由此,笛卡尔第一步就主张对每一件事情都进行怀疑,而不能信任我们的感官。从这里他悟出一个道理:他必须承认的一件事就是他自己在怀疑。而当人在怀疑时,他必定在思考,由此他推出了著名的哲学命题――“我思故我在”(Cogito ergo sum)。笛卡尔将此作为形而上学中最基本的出发点,从这里他得出结论,“我”必定是一个独立于肉体的、在思维的东西。笛卡尔还试图从该出发点证明出上帝的存在。笛卡尔认为,我们都具有对完美实体的概念,由于我们不可能从不完美的实体上得到完美的概念,因此有一个完美实体――既上帝――必定存在。从所得到的两点出发,笛卡尔再次证明,现实世界中有诸多可以用理性来察觉的特性,既它们的数学特性(如长、宽、高等),当我们的理智能够清楚地认知一件事物时,那么该事物一定不会是虚幻的,必定是如同我们所认知的那样。

虽然笛卡尔证明了真实世界的存在,他认为宇宙中共有2个不同的实体,既精神世界和物质世界(“灵魂”和“扩延”),两者本体都来自于上帝,而上帝是独立存在的。他认为,只有人才有灵魂,人是一种二元的存在物,既会思考,也会占空间。而动物只属于物质世界。

笛卡尔强调思想是不可怀疑的这个出发点,对此后的欧洲哲学产生了重要的影响。但是它的基础,“我思故我在”被后人证明是并不十分可靠的,因为该公式其实是建基于承认思想是一个自我意识这一隐蔽着的假设上的,如果摈弃了自我意识,那么笛卡尔的论证就失败了。而笛卡尔证明上帝存在的论点,也下得很匆忙。

勒奈·笛卡尔 - 对科学的贡献

笛卡尔对数学最重要的贡献是创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在他的著作《几何》中,笛卡尔向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡尔引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。

此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。

勒奈·笛卡尔


在物理学方面,笛卡尔也有所建树。他在《屈光学》中首次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。力学上笛卡尔则发展了伽利略运动相对性的理论,强调了惯性运动的直线性。笛卡尔发现了动量守恒原理。他还发展了宇宙演化论、漩涡说等理论学说,虽然具体理论有许多缺陷,但依然对以后的自然科学家产生了影响。

他还用光的折射定律解释彩虹现象,并且通过元素微粒的旋转速度来分析颜色。

勒奈·笛卡尔 - 笛卡儿的成就

笛卡儿强调科学的目的在于造福人类,使人成为自然界的主人和统治者。他反对经院哲学和神学,提出怀疑一切的“系统怀疑的方法”。但他还提出了“我思故我在”的原则,强调不能怀疑以思维为其属性的独立的精神实体的存在,并论证以广延为其属性的独立物质实体的存在。他认为上述两实体都是有限实体,把它们并列起来,这说明了在形而上学或本体论上,他是典型的二元论者。笛卡儿还企图证明无限实体,即上帝的存在。他认为上帝是有限实体的创造者和终极的原因。笛卡儿的认识论基本上是唯心主义的。他主张唯理论,把几何学的推理方法和演绎法应用于哲学上,认为清晰明白的概念就是真理,提出“天赋观念”。笛卡儿的自然哲学观同亚里士多德的学说是完全对立的。他认为,所有物质的东西,都是为同一机械规律所支配的机器,甚至人体也是如此。同时他又认为,除了机械的世界外,还有一个精神世界存在,这种二元论的观点后来成了欧洲人的根本思想方法。

物理学方面

笛卡儿靠着天才的直觉和严密的数学推理,在物理学方面做出了有益的贡献。从1619年读了开普勒的光学著作后,笛卡儿就一直关注着透镜理论;并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。笛卡儿运用他的坐标几何学从事光学研究,在《屈光学》中第一次对折射定律提出了理论上的推证。他认为光是压力在以太中的传播,他从光的发射论的观点出发,用网球打在布面上的模型来计算光在两种媒质分界面上的反射、折射和全反射,从而首次在假定平行于界面的速度分量不变的条件下导出折射定律;不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。在力学上,笛卡儿发展了伽利略的运动相对性的思想,例如在《哲学原理》一书中,举出在航行中的海船上海员怀表的表轮这一类生动的例子,用以说明运动与静止需要选择参照物的道理。笛卡儿在《哲学原理》第二章中以第一和第二自然定律的形式比较完整地第一次表述了惯性定律:只要物体开始运动,就将继续以同一速度并沿着同一直线方向运动,直到遇到某种外来原因造成的阻碍或偏离为止。这里他强调了伽利略没有明确表述的惯性运动的直线性。在这一章中,他还第一次明确地提出了动量守恒定律:物质和运动的总量永远保持不变。笛卡儿对碰撞和离心力等问题曾作过初步研究,给后来惠更斯的成功创造了条件。

天文学方面

笛卡儿把他的机械论观点应用到天体,发展了宇宙演化论,形成了他关于宇宙发生与构造的学说。他认为,从发展的观点来看而不只是从已有的形态来观察,对事物更易于理解。他创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。他认为天体的运动来源于惯性和某种宇宙物质旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体,以这种假说来解释天体间的相互作用。笛卡儿的太阳起源的以太旋涡模型第一次依靠力学而不是神学,解释了天体、太阳、行星、卫星、彗星等的形成过程,比康德的星云说早一个世纪,是17世纪中最有权威的宇宙论。笛卡儿的天体演化说、旋涡模型和近距作用观点,正如他的整个思想体系一样,一方面以丰富的物理思想和严密的科学方法为特色,起着反对经院哲学、启发科学思维、推动当时自然科学前进的作用,对许多自然科学家的思想产生深远的影响;而另一方面又经常停留在直观和定性阶段,不是从定量的实验事实出发,因而一些具体结论往往有很多缺陷,成为后来牛顿物理学的主要对立面,导致了广泛的争论

数学方面

笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学方法之一。

勒奈·笛卡尔 - 解析几何的诞生

文艺复兴使欧洲学者继承了古希腊的几何学,也接受了东方传入的代数学。利学技术的发展,使得用数学方法描述运动成为人们关心的中心问题。笛卡儿分析了几何学与代数学的优缺点,表示要去“寻求另外一种包含这两门科学的好处,而没有它们的缺点的方法”。在《几何学》卷一中,他用平面上的一点到两条固定直线的距离来确定点的距离,用坐标来描述空间上的点。他进而创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。笛卡儿把几何问题化成代数问题,提出了几何问题的统一作图法。为此,他引入了单位线段,以及线段的加、减、乘、除、开方等概念,从而把线段与数量联系起来,通过线段之间的关系,“找出两种方式表达同一个量,这将构成一个方程”,然后根据方程的解所表示的线段间的关系作图。在卷二中,笛卡儿用这种新方法解决帕普斯问题时,在平面上以一条直线为基线,为它规定一个起点,又选定与之相交的另一条直线,它们分别相当于x轴、原点、y轴,构成一个斜坐标系。那么该平面上任一点的位置都可以用(x,y)惟一地确定。帕普斯问题就化成了一个含两个未知数的二次不定方程。笛卡儿指出,方程的次数与坐标系的选择无关,因此可以根据方程的次数将曲线分类。《几何学》一书提出了解析几何学的主要思想和方法,标志着解析几何学的诞生。此后,人类进入变量数学阶段。在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了韦达创造的符号系统,用a,b,c,…表示已知量,用x,y,z,…表示未知量。解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要了。”

勒奈·笛卡尔 - 参考资料

1.http://www.pep.com.cn/200406/ca416237.htm

更新日期:2024-11-21

免费下载联系我们下载帮助免责声明版权声明用户协议隐私协议撤稿声明作品投搞关于我们常见问题网站地图

声明:网站内容全部来自于网络公开搜索结果,不保证100%准确性,仅供参考,如侵犯到您的权益,请提供版权证明来信通知,我们72小时内删除!

本站仅仅提供一个观摩学习的环境,非赢利性网站,将不对任何资源负法律责任,不接受任何赞助和广告!

删稿邮箱: pgdjz@qq.com

Copyright @ 2023-2024 www.pgdjz.com All Rights Reserved