名人简介
  • 车载音乐
  • 车载视频
  • LRC歌词
  • 简谱图片
  • 手机铃声
  • 名人简介
  • 汽车知识
当前位置:首页 - 名人 - 清朝数学家 - 汪莱
汪莱

汪莱

汪 莱(1768--1813),字孝婴,号衡斋,歙县瞻淇人。清代著名数学家,著有《衡斋算学》。
展开

简介

汪 莱,字孝婴,号衡斋,歙县瞻淇人。数学、天文、经学、训诂学、音韵学和乐律等都有很深造诣,尤以数学成就最著。嘉庆十一年(1806),为治理黄河水害,受命测量云梯关(今江苏淮安县东北200里)、六塘河入海口高程。嘉庆十二年,以优贡生入京,考取八旗官学教习,入史馆纂修《天文志》、《时宪志》。嘉庆十五年,调任池州郡石埭县训导,因廉洁自奉,尽心办学,卒于任上。池州郡守撰文勒碑于明伦堂,表彰汪莱的办学功绩。汪莱在P进位制、方程论、弧三角术和组合计算方面取得重要研究成果。当时普遍采用十进位制,汪莱认为不必“尽立数于十”,对于具体问题,究竟采用何种进位制为宜,原则上应当“审法与数相宜而已”。较之本世纪40年代随着电子计算机的出现才兴起的P进位制研究早150余年。中国古代方程,多侧重解法(开方术)及布列法(天元法),只求解方程的一个正根,对于方程根的个数及性质认识模糊。汪莱指出,二次方程有二根,并论证了三次方程正根与系数的关系和三次方程有正根的条件。汪莱对于方程的认识、根的存在与判别的研究,是我国方程理论研究的发端。汪莱说“弧三角之算,穷形固难,设形亦难,稍不经意,动乖其方”。他分别论证了已知三边,三角,二角夹边或二边夹角,二角对一边或二边对一角等各种情况下有解的条件,其成就在梅文鼎、戴震、 焦循诸家之上,汪莱将组合计算公式建立在中国传统的贾宪三角形规律上,论证了组合运算及其若干性质。所得出的递兼的定义、性质、计算公式以及恒等式均与现代组合运算结果相同:,发现了组合规律,更赋予古老的贾宪三角形以组合的意义。汪莱治学严谨,“人所言,不复言。所言皆人所未言与人所不能言”。主要著作有《衡斋算学》7册、《馨氏倨句解》1册、《参两算经》、《校正九章算术及戴氏订讹》、《四边形算法》、《十三经注疏正误》、《禹贡图考》、《说文声类》、《乐津逢源》、《衡斋诗集》等。

史传记载

汪莱,字孝婴,号衡斋,歙县人。年十五,补博士弟子。弱冠后,读书於吴葑门外,慕其乡江文学永、戴庶常震、金殿撰榜、程徵君易畴学,力通经史百家及推步历算之术。嘉庆十二年,以优贡生入都,考取八旗官学教习,会御史徐国楠奏请续修天文、时宪二志,经大学士首举莱与徐准宜、许澐入馆纂修。十四年,书成。议叙,以本班教职用,选授石埭县训导。十八年,应省试,得疾归,卒於官,年四十有六。先是十一年夏,黄河启放王营减坝,正溜直注张家河,会六塘河归海。两江督臣奉上命,查量云梯关外旧海口与六塘河新海口地势高下,延莱测算,盖其精算之名,久为官卿所知。曾制浑天、简平、一方各仪器观测。

与郡人巴树谷最友善,客江、淮间,又与焦孝廉循、江上舍籓、李秀才锐,辩论宋秦九韶、元李冶立天元一及正、负开方诸法。天性敏绝,极能攻坚,不肯苟於著述。凡所言,皆人所未言,与夫人所不能言。

尝以古书八线之制,终於三分取一,用益实归除法求之,其一表之真数,仅得十之二。因悟得五分之一通弦与五分之三通弦交错为三角形,比例立法,以取五分之一之通弦,而弦切之数益密。梅氏环中黍尺,有以量代算之术,惟求倚平仪外周之两角,而缩於内半周之角未详。其法较易,因立新术,量取不倚外周之角度,而三角之量法乃全。堆垛有求平三角、立三角、尖堆积法,不及三乘方以上,又复推而广之,自三乘、四乘以上之尖堆,皆可由根知积。并及诸物递兼之法,以补古九章所未备。

又纠正梅文穆公句股知积术,及指识天元一,正、负开方之可知、不可知。其纠正句股知积术也,文穆赤水遗珍称:“有句股积及股弦和较求句股,向无其术,苦思力索,立法四条。”其门人丁维烈又造减纵翻积开三乘方法,文穆许之。莱谓:“句股形等积、等弦和,带纵立方形等基、等高阔和,皆有两形互易。如句二十,股二十一,弦二十九,句弦和四十九,句股积二百一十。若句十二,股三十五,弦三十七,句弦积亦四十九,句股积亦二百一十。设问者暗执一形,则对者交盲两数。梅、丁诸公法成而不可用,盖两句弦较,与一句弦和,恒为连比例之三率。其两句弦较,即首、末二率;两较减一和之馀,即中率;而句弦和必为三率亻并。遂创立有两积相等、两句弦和相等、求两句股形之法。以四倍句股积自乘,句弦和除之,为带纵长立方积。以句弦和为纵,开得数为两句弦较之中率,自乘为带纵平方积。又以中率与句弦和相减为长阔和,求得长阔两根为两句股较,用求两句股形各数。又同积之边,彼此可互,三次之乘,先后可通,故四倍句股积自乘,即两形之倍句相乘为底,两形之股相乘为高,即犹以中末乘首。中化为中率,再乘为立方三率,亻并为带纵。由是推得立方形两高数恒为首末二率,高阔和恒为三率,亻并数与等积、等弦和之两弦较及弦和丝毫无异。如高九阔十,高阔和十九,立方积九百。若高四阔十五,高阔和亦十九,立方积亦九百,其数莫不由两形相引而出。故其法即命积为带纵长立方积,以高阔和为所带之纵。用带纵长立方法开得本方根,为两形高数之中率。与高阔和相减,馀为带纵之平方长阔和。中率自乘,为带纵平方积。用带纵平方长阔和法开之,得长阔一根,为两形之两高数。两高与和相减,为两阔数。”

汪莱

其指识正、负开方也,“元李冶传洞渊九容术,撰测圆海镜、益古演段,以明天元如积相消,其究必用正、负开方,互详於宋秦九韶数学九章。梅文穆公虽指天元一为西人借根方所由来,而正、负开方则未有阐明者。元和李秀才锐特为雠校,谓少广一章,得此始贯於一。好古之士,翕然相从。莱独推其有可知、有不可知。如测圆海镜边股第五问u2018圜田求径二百四十步与五百七十六步共数u2019,而李仁卿专以二百四十为答。数学九章田域第二题u2018尖田求积二百四十步与八百四十步共数u2019,而秦道古专以八百四十为答。乃自二乘方以下,缕析推之,得九十五条。凡几根数为带纵长阔较则可知,为带纵长阔和则不可知。又推得几真数少,几根数又多,几平方与一立方积等多少杂糅,和较莫定。立法以审之,以几平方数用几立方数除之,得数乘几根数,以较几真数。若少於真数,则以几平方为高阔较,是为可知。若多於真数,则或几平方为通分法,三母总数、几真数为三母维乘之共数,几根数为通分之共子,如二、如六、如十二。设真数一百四十四,少二百八,根数多二十,平方积与一立方积相等,则三数皆同,是为不可知。”

盖以一答为可知,不止一答为不可知。故李秀才锐跋其书,括为三例以证明之。谓:“隅实同名者不可知;隅实异名,而从廉正负不杂者可知;隅实异名,而从廉正负相杂,其从翻而与隅同名者可知,否则不可知。隅实异名,即带纵之长阔较也,较仅一答;隅实同名,即带纵之长阔和也,和则不止一答。”锐以隅实同名、异名,明一答与不止一答;莱以长阔、和较,明可知、不可知,其义一也。著有衡斋算学七册,考定通艺录磬氏倨句解一册。

生平事迹

汪莱(1768——1813),字孝婴,号衡斋。安徽歙县人。弱冠之年父亲逝世,遂只身去苏州,于葑门外设馆,以维生计。汪莱天资敏绝,有早慧之誉,一些重要论著多成稿于其青年时期,谓其“其学由自得,不假师授”(民国《歙县志·卷七》),或与其刻苦自厉有关。汪莱有学有识,多才多艺,除天算外,还通晓经史、释老及音韵、训诂、乐律、金石之学,工篆书,亦能诗,一生以设馆课徒为业,虽曾参与编辑国史馆《天文志》、《时宪志》,书亦不过授与一县城之训导而已。

汪莱的故乡歙县乃是徽派朴学的重要阵地,其青年时期就仰慕同乡江永、戴震、程瑶田、金榜之卓著成就,遂致力于通晓经史百家及推步历算之术。乾隆五十七年(1792),汪莱在故里制成浑天、简平等仪器,用以观测天象。同年,撰写成以阐述第谷体系的行星及日月运行规律的《覆载通几》,这是一部天文学著作,其中一些示图是依靠几何定理来作出的说明,创立了天算结合的研究模式,殊为难得。嗣后又多次前往扬州,设馆课徒。苏、扬是当时经济文化发达、人文荟萃的地区,汪莱在此得以结识不少知名之士如焦循、李锐等人,特别是与焦循相交,友谊最深。“循称当时精九数之学者,惟莱及锐。锐善言古人所已言,而阐发得其真;莱善言古人所未言,而引申得其间。锐,精实,如诗之有少陵;莱,超异,如诗之有太白。又称莱天资敏绝,性能攻坚,极繁赜幽秘,他人翻复再三,未能理其绪。而莱目一二过,已贯达其条目……” 焦循作为汪莱、李锐的好友,对二人深知有素,故所作评论,最为可信,故详引之(李锐,出吴派大家钱大昕门下,数学造诣之高享誉学林)。嘉庆六年(1801),汪莱又由歙县来到扬州,这次是应聘在翰林秦恩复家教馆。秦氏五笥仙馆贮有大量藏书,又时有名流学者前来聚会或造访。汪莱在这里认识了张敦仁、江藩、钱献之等学者。同年秋天,汪莱离开扬州去六安,后二年返回扬州。嘉庆八年(1803),张敦仁来任扬州知府,聘李锐为他当幕宾。这时,汪莱、焦循、凌廷堪、沈钦裴等人都在扬州,彼此切磋学问,旧友新交,地灵人杰,营造了相当活泼欢快的学术研究氛围。嘉庆十年(1805),夏銮来到徽州,担任新安训导,到任后四处访贤,适汪莱返乡,举荐他参加岁试,成廪生,后又荐举为优行督学。夏銮又命门生胡培翚、长子夏炘、四子夏燮向汪莱学习算学。次年两江总督奉旨测量黄河新旧入海口地势,延请汪莱主持,完成了测算任务。嘉庆十三年(1808),汪莱以优贡生赴北京,大学士禄康荐修国史天文、时宪二志,后授石埭(今石台)训导,时考制乐舞等器17宗,158件。嘉庆十八年(1813)卒于任职,身后萧然,石埭百姓出资送其归葬于故乡歙县之梅岭。

汪莱毕生致力于数学研究,其算学造诣曾为当时的同行专家所认可,焦循《加减乘除释》、张敦仁《辑古算经细草》都曾请汪莱为之作序,其序文今收载在其最有代表性的著作《衡斋文集》之中,其中对球面三角形的解法作了比较详细的论述,而之前梅文鼎、江永、戴震、焦循都曾为此撰文论述,然而都不及汪莱本书提出的“量角度新法”来得系统和详审。汪莱提出在求解方程时方程根不只有一正根,亦有负根,并设96道例题加以证明,是中国数学史上关于方程根研究的一个突破。汪莱对于其他诸如弧三角形、勾股形、 平圆形、弧矢关系、代数方程理论等专题都著有详尽的阐述。汪莱终生不得志,但始终坚持治学,刻意求新,研究算学往往参用西法,其主要著述流传至今,使后世在二百年后的今天,还得以窥见其才华和风采。

详细介绍

早岁维艰

汪莱祖上以“诗书继世,孝友传家”为家训,其父汪昌早失亲,就此家道中衰。但汪昌博览群书,能诗善文,并曾中举人,撰有《静山堂诗文集》。 1768年9月27日,汪莱就诞生在这样一个贫寒的读书人家庭,其出生地在歙县瞻漠(今称记)之静山堂。

汪莱自幼秉承文学,6岁能诗,14岁入库。当时款县水、旱不断,家中生活更加艰辛。有一次汪莱奉父母命进城典当衣 归途遭恶犬咬啮,在腿上留下了深深的伤疤。这种艰难的活环境,铸就了他日后坚毅、顽强和独立不羁的个性。

舌耕生涯

1788年,汪昌去世,汪莱也开始离家谋生。这一年他刚满20岁,首先来到苏州,在葑门外教馆。在此期间,汪莱结识了著名学者焦循,并开始研读《梅氏历算全书》和《数理精蕴》等数学著作。1792年,汪莱返归故里,在家中自制浑仪、简平仪等并用它们来观测天象,这一期间他完成了一部名为《参两算经》的最早的数学作品。1796一1798年,汪莱先后与自己的同乡好友巴树谷、江玉讨论数学,完成《弧三角形》和《勾股形》两部书稿。 1789年,巴树谷将此两书合为一帙刊行,取名《衡斋算学》,这就是汪莱数学著作的最早刊本。同年汪莱乡试不第,巴树谷适有失子之伤,二人“移其情”于数学,“演得三干言”,这就是后来成了《衡斋算学》之三的《平圆形》。l799年,汪莱又应亲戚汪应埔之请“构难题数端往诸算学博士”,此即又一篇《弧三角形》,连同旧著《递兼数理》一道,后来成为《衡斋算学》之四。

1801年,汪莱由歙县来到扬州,在翰林秦恩复家教馆。秦家藏书颇丰,当时的扬州又是学士名流荟萃的中心,汪莱在此读到了宋元数学家秦九韶、李冶的著作,又得以与张敦仁、江藩、钱献之、李锐等相识。在对秦、李算书进行研究的基础上,汪莱写成了关于方程论的《衡斋算学》之五。这年秋天,汪莱离扬州赴六安,途中撰成《衡斋算学》之六。年底,汪延麟在扬州为他刊刻了六卷本的《衡斋算学》。

汪莱与乾嘉时代的另一个大数学家李锐初次会面于1800年。《衡斋算学》之五写成后,他曾分送数人征询意见;其中唯有李锐理解他的用心,赞为“穷幽极微,真算氏之最”李锐又作跋文一篇,后来也被收入《衡斋算学》之中。 1804年,李锐应知府张敦仁之邀来扬州充任幕宾,当时焦循也在扬州,汪莱与他们二人交往频繁,时人称他们为“谈天三友”。在此期间,汪莱继续钻研方程论,撰成《衡斋算学》之七。至此,汪莱的主要数学著作都已完成。

1805年,名学者夏銮调任新安训导,到歙县后闻知汪莱贤名,立即前往造访。两人“一见称莫逆,与语终日”,夏蛮称汪莱为“天下奇才”,并令门生胡培恽子夏忻、夏曼从汪学习数学。1806年,汪莱曾应两江总督铁宝之请主持黄河新、旧入海口的高程测算,功成后依然返歙。1807年在歙县以优行第一的成绩考取八旗官学教习,被选调入京参与国史馆的修历工作。在北京期间,汪莱读到明安图《割圆密率捷法》遗稿,对自己当年关于割圆分弧的作品有所检讨。国史馆的工作完成后,汪莱于1811年被分配到安徽石埭县任县学教渝。

潦倒一生

汪莱志大才高,行为举止几近狂放,因此常与社会习俗冲突。他年轻时曾赋诗称“我亦乡间肆志人”, “兴来大叫鬼神惊”。乡试落第后自云“抱下而泣”。夏忻描绘他的外貌为“长身玉立,须眉秀发”,而他的气质为“跪磊不平之气,往往慷慨悲歌。”汪莱生前,学术界除焦循、李锐、夏蛮等少数人外,多数学者都不能理解他的成就。张敦仁曾讥评他的方程论研究“过苦”,后来又将自己的《开方补记》及搜访到手的明安图遗稿对他实行保密。曾与汪莱。、李锐都有交游的江藩把他们二人的学术争论加以渲染,说他们因论方程不合“遂如冠仇,终身不相见”,进而批评汪莱“过矣”。稍晚的罗士琳批评他“矫枉过正,未免失于偏。”骆腾风根本没有理解他的原意,就攻击他的方程论是“黯黔之词以欺世”,并以“算学砭愚”为题指名道姓地批评他的著作。种种事实表明,汪莱是被当时以考据相标榜的乾嘉学圈视为异端的人物。

汪莱到石埭后,生活依然清寒。此时他已很少与外界发生联系,但遇县学中有热心数学的生员,则悉心教诲,不厌其烦。他临终前几个月夏銮曾来看望,见其“颜色憔悴,悄然不乐”,就劝他再度著书;汪莱答道:“今世考据家陈陈相因,不过抄袭前言耳,非所发古人所未发也”。1813年12月4日,贫病交扰的汪莱死于任上。汪莱死后,家中萧然,囊无余资,石埭学生百姓感其清廉,输资送其枢归故里,葬于歙县梅岭之将军打坐场。

汪莱生前,《衡斋算学》已.出过三种刊本,但都不是足本。他去世后,夏蛮十分关心他的遗稿,特嘱长子夏忻与胡培翠加以搜集整理,后得《衡斋遗书》九卷,但长时间未能付样。1854年,夏蛮四子夏燮调任都阳(今江西波阳)知县,即从胡培翠后人处访得《衡斋遗书》稿本,连同《衡斋算学》一道,刊成《衡斋算学遗书》合刻本。《衡斋遗书》个也包括多种数学作品。

主要著作

其主要著述有《参两算经》、《校正九章算术》、《戴氏订讹》、《十三经注疏正误》、《声谱》、《说文声类》、《今有录》、《诗文集》等。 嘉庆三年(1798),巴树谷将汪莱几年内所撰的“弧三角形”、“勾股形”书稿各一卷合刻,题名《衡斋算学》。咸丰四年(1854),夏燮访得《衡斋遗书》稿本,连同《衡斋算学》刊成《衡斋算学遗书》合刻本。

历史评价

夏銮见他后,与语终日,临别,目送之,叹为“天下奇才”。

夏炘曾记述汪莱的风貌和为人,说他“长身玉立,须眉秀发”,说他“性喜饮,酒酣耳热,平生硊磊不平之气,往往慷慨悲歌,声音激越”。

“孝婴之学,深妙入微”。

人所言,不复言,所言皆人所未言,与人所不能言。故其著述无多卷,而简奥似周秦古书。又称莱于《六经》,务在熟习本文,博通注疏,原始要终,以一知半解为陋。熟于许氏《说文》,工篆法,余事亦为诗歌。性渊穆和易,与人接,无涯岸。有以所著撰相质,必首尾研究再三,否者直乙之,是者为之疏通发明。——汪莱好友焦循

清华大学电子工程系副教授

汪莱,男,博士, 清华大学电子工程系副教授。

教育背景

2008年,清华大学电子工程系——物理电子学专业——博士学位

2003年,清华大学电子工程系——电子科学与技术专业——学士学位

工作履历

2012至今清华大学电子工程系 副教授

2010-2012 清华大学电子工程系 助理研究员

2008-2010年 清华大学电子工程系 博士后

研究领域

面向国民经济和国家安全的发展需求,围绕第三代半导体材料——GaN基材料,开展支撑半导体照明技术、新能源技术、量子技术、纳米技术、紫外探测技术、传感技术的关键新材料、新工艺和新器件研究。研究内容包括:

GaN基材料的MOCVD生长技术;

GaN基发光二极管;

InGaN量子点及器件;

GaN基纳米材料及纳米结构;

GaN基紫外光探测器和气体、液体传感器。

奖励与荣誉

2011年荣获国家科技进步二等奖,排名第8。

更新日期:2024-12-24

免费下载联系我们下载帮助免责声明版权声明用户协议隐私协议撤稿声明作品投搞关于我们常见问题网站地图

声明:网站内容全部来自于网络公开搜索结果,不保证100%准确性,仅供参考,如侵犯到您的权益,请提供版权证明来信通知,我们72小时内删除!

本站仅仅提供一个观摩学习的环境,非赢利性网站,将不对任何资源负法律责任,不接受任何赞助和广告!

删稿邮箱: pgdjz@qq.com

Copyright @ 2023-2024 www.pgdjz.com All Rights Reserved