阿特利·西尔伯格
阿特利·西尔伯格 - 概述
阿特利·西尔伯格是挪威数学家,素数定理有些初等证明只需用数论的方法。第一个初等证明於1949年由匈牙利数学家保罗·艾狄胥(“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些间题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 category:数论 ja:素数定理。
证明思路:初等证明的思路一般是利用欧拉恒等式,从中找到素数分布与自然对数的关系。
阿特利·西尔伯格 - 相关内容
定理描述素数素数的大致分布情况。 素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义π(x)为不大于x的素数个数。数学家找到了一些函数来估计π(x)的增长。以下是第一个这样的估计。 :pi(x)approxfrac 其中ln x为x的自然对数。上式的意思是当x趋近∞,π(x) 和x/ln x的比趋近1(注:该结果为高斯所发现)。但这不表示它们的数值随着x增大而接近。 下面是对π(x)更好的估计: :pi(x)= (x) + O left(x e^ ight),当 x 趋近∞。 其中 (x) = int_2^x frac,而关系式右边第二项是误差估计,详见大O符号。 下表比较了π(x),x/ln x和Li(x): x π(x) π(x) - x/ln(x) Li(x) - π(x) x/π(x)
素数定理可以给出第n个素数p(n)的渐近估计: :p(n)sim nln,n. 它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(Jacques Hadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,假设黎曼猜想成立,以上关系式误差项的估计可改进为 : pi(x) = (x) + Oleft(sqrt x ln,x ight) 至於大O项的常数则还未知道。
- 1[MP4]2025 不要你的红包发财发福中国年 小哈尼Viki Miko晓倩 JaniceOfficia2024-12-15
- 2[MP4]2025新年歌新年歌儿大家唱Nick钟盛忠 Stella钟晓玉 Officia2024-12-15
- 3[MP4]Erva da Jamaica - Live in Indian Spirit - Germany2024-12-15
- 4[MP4]Neelix - Bang Bang (Sighter Remix - Official Music Video)2024-12-15
- 5[MP4]超嗨串烧BEAUZ - PSY POP _ HARD TECHNO DJ SET Borderland Festival Malaysia2024-12-15
- 6[MP4]2025 黄铭德尾尾庙宇朝拜一家大小2024-12-15
- 7[MP4]2025新年歌同欢共乐Nick钟盛忠 Stella钟晓玉 feat巧千金 Joanne Miko Official2024-12-15